5 research outputs found

    PaST-NoC: A Packet-Switched Superconducting Temporal NoC

    Full text link
    Temporal computing promises to mitigate the stringent area constraints and clock distribution overheads of traditional superconducting digital computing. To design a scalable, area- and power-efficient superconducting network on chip (NoC), we propose packet-switched superconducting temporal NoC (PaST-NoC). PaST-NoC operates its control path in the temporal domain using race logic (RL), combined with bufferless deflection flow control to minimize area. Packets encode their destination using RL and carry a collection of data pulses that the receiver can interpret as pulse trains, RL, serialized binary, or other formats. We demonstrate how to scale up PaST-NoC to arbitrary topologies based on 2x2 routers and 4x4 butterflies as building blocks. As we show, if data pulses are interpreted using RL, PaST-NoC outperforms state-of-the-art superconducting binary NoCs in throughput per area by as much as 5x for long packets.Comment: 14 pages, 18 figures, 2 tables. In press in IEEE Transactions on Applied Superconductivit

    Food insecurity in relation to changes in hemoglobin A1c, self-efficacy, and fruit/vegetable intake during a diabetes educational intervention.

    Get PDF
    ObjectiveFood insecurity is hypothesized to make diabetes self-management more difficult. We conducted a longitudinal assessment of food insecurity with several diabetes self-care measures.Research design and methodsWe conducted a secondary, observational analysis of 665 low-income patients with diabetes, all of whom received self-management support as part of a larger diabetes educational intervention. We analyzed baseline food insecurity (measured by the U.S. Department of Agriculture Food Security module) in relation to changes in hemoglobin A1c (HbA1c) as well as self-reported diabetes self-efficacy and daily fruit and vegetable intake. We examined longitudinal differences using generalized estimating equation linear regression models, controlling for time, age, sex, race, income, and intervention arm.ResultsOverall, 57% of the sample had an income <$15,000. Participants who were food insecure (33%) were younger, had less income, and were more likely to be unemployed compared with participants who were food secure. At baseline, those who were food insecure had higher mean HbA1c values (8.4% vs. 8.0%) and lower self-efficacy and fruit and vegetable intake than those who were food secure (all P < 0.05). Compared with food-secure individuals, participants who were food insecure had significantly greater improvements in HbA1c over time (0.38% decrease compared with 0.01% decrease; P value for interaction <0.05) as well as in self-efficacy (P value for interaction <0.01). There was no significant difference in HbA1c by food security status at follow-up.ConclusionsParticipants experiencing food insecurity had poorer diabetes-related measures at baseline but made significant improvements in HbA1c and self-efficacy. Low-income patients who were food insecure may be particularly receptive to diabetes self-management support, even if interventions are not explicitly structured to address finances or food security challenges
    corecore